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Laminar convection cells at high Rayleigh number 

By P. WESSELINGT 
Jet Propulsion Laboratory, Pasadena, California 

(Received 5 February 1968 and in revised form 3 December 1968) 

The asymptotic behaviour for large Rayleigh number and Prandtl number of 
0 (1) of two-dimensional convection cells in a fluid between horizontal plates 
heated from below has been discussed by Pillow (1952) and more recently by 
Robinson (1967). The flow models derived by Pillow and Robinson differ from 
each other. The purpose of the present paper is to point out the likelihood of an 
inconsistency in Robinson’s flow model, and to discuss qualitatively a few 
hitherto unnoticed features of the flow. 

1. Introduction 
The asymptotic behaviour for large Rayleigh number and Prandtl number of 

0 (1) of two-dimensional convection cells has recently been discussed by Robin- 
son (1967). 

Robinson chooses to make the equations dimensionless in the following way: 

where asterisks denote dimensional variables, r* and v* are the position and the 
velocity vector, d is the distance between the horizontal plates, K is the thermal 
conductivity, v is the kinematic viscosity, T* is the temperature, To is the 
average of the temperatures of the plates, 2AT is the temperature difference 
between the plates, p* is the pressure, po is the average density, g is the accelera- 
tion of gravity, and z* is the vertical co-ordinate. 

Although the Rayleigh number (to be defined shortly) tends to infinity, the 
flow is assumed to be steady. The dimensionless equations are, using the Bous- 
sinesq approximation : 

divv = 0, (2) 
(3) 

(4) 

(v .  V) 8 = V28, 
1 - ( v . V ) V  = - V J I + R B ~ + V ’ V .  
0- 

Taking the curl of (4) gives 
1 a0 
- ( v . V ) ~  0- = -R-+VZq.  ax ( 5 )  

In these equations, k is the unit vector in the positive z-direction (upwards), 
R = gaATd31~v (where a is the thermal expansion coefficient) is the Rayleigh 
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number, CT = V/K is the Prandtl number, and 7 is the vorticity. It is assumed that 
the motion is two-dimensional. Let the (x, 2)-plane be parallel to the velocity 
vector, so that the vorticity is given by 

Figure 1 represents a convection cell. Three different cases are studied by 
Robinson (1967): (i) the full boundary ABCD rigid; (ii) fluid both inside and 
outside ABCD; (iii) AD and BC rigid, fluid at  both sides of AB and CD. Only 
the third case will be considered here. 

FIGURE 1. A two-dimensional convection cell. 

Equation (2) guarantees the existence of a stream function $ such that 

= a$laz, w = - a$lax. (6) 

The boundary conditions along AB and CD are 

II. = 0, awlax = 0, a q a X  = 0. 

The boundary conditions along AD and BC are 

+ 1  along AD, 
- 1  along BC. 

+=o ,  u = o ,  e =  

( 7 )  

2. Description of Robinson’s flow model 
The flow in the interior of the cell is taken to be non-dissipative, so that 

temperature and vorticity are constant along streamlines. As shown by Pillow 
(1952), 8 = 0 in the interior. According to a theorem due to Prandtl (1904), the 
vorticity equals ,qo, a constant, in the interior. 
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For the regions close to AB and BC, Robinson substitutes the following 
asymptotic expansions in the equations: 

@ = Rh#o (2, Z) + Rb-ma$gL (6 ,  Z) + Rb-ma#‘t)(~, X )  + . . . , 
AB: / e = egk(6,x)+ ..., ] (9) 

BC: [ = e(&(x,<)+ ..., j (10) 

< = x R ~ .  
9 = Rb#, (x ,  Z) + Rb-m‘a‘$$L(~, 5) + Rb-m’a’$~h’(~, Z) + . . . , 

y = (2-d)  Ra‘. 

Robinson determines the exponents a, b, m, a‘ and m‘ by balancing the heat 
convection and heat diffusion terms in (3), the vorticity convection, vorticity 
diffusion and vorticity production terms in (5), heat conducted through the walls 
and heat convected through the vertical layers, and by using some of the bound- 
ary conditions along AB and BC. The boundary conditions used are: awlax = 0 
along AB, and u = 0 along BC. This gives 

The following result is obtained: 

a = 1  3, b = z  37 m = 2 ,  a ’ = 1  37 m’=1. (13)  

The values m = 1, m’ = 2 listed on p. 581 of Robinson’s paper seem to be mis- 
prints. Equation (9) of Robinson’s article gives explicitly m = 2 :  this follows 
from (1 1) above. The value m‘ = 1 follows from ( 1 2 )  above, which represents the 
no-slip condition along the horizontal wall. Also, m‘ = 1 corresponds to the 
statement made on p. 581 of Robinson’s article, that the viscous torque is O ( R )  
(see equation (16)). 

It is instructive to let R tend to infinity by letting the viscosity tend to zero 
with all other parameters fixed. Robinson’s flow model then gives a viscous 
region with thickness of order v%, and (dimensional) velocities in the inviscid 
interior of order v--f. 

3. Discussion of Robinson’s flow model 

is given by 
The total (dimensional) buoyancy force working on a vertical boundary layer 

buoyancy force = pogad2ATR-a eat. (14)  
0 

The total (dimensional) frictional force working on a horizontal boundary 
layer is given by 

frictional force = pOgad2ATR-l (15 )  

where L is the length of a cell. 
40-3 
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With the limit process defined by equation (13) one finds 

Hence the friction is an order of magnitude larger than the buoyancy force. 
According to Robinson, the viscous torque working on a convection cell is 
balanced by the ‘second-order pressure torque’ (Robinson 1967, p. 581). 

With the limit process defined by equation (13), the equation of motion for 
the horizontal boundary layers is found to be, to leading order, 

where U is the velocity at the cell boundary as given by the Euler solution (the 
Euler velocity). The dependent variables and their derivatives which occur in 
(17) are of various orders of magnitude. It is convenient to transform (17) into 
an equation in which all dependent variables and their derivatives remain 0 (1) 
as R+m. From (10) and (13) it follows that this can be done by means of the 
following substitutions: 

- 

u = GRg, w = ERA, U = UR8, x = X, z = ZR-9. (18) 

With these substitutions, (17) transforms into itself 

The boundary conditions are, for the lower horizontal boundary layer, 

U ( 5 , O )  = 0,  G ( X , c o )  = B(X). (20) 
_ _  

The pressure gradient - UdU/dx is known from the Euler solution as computed 
by Pillow (1952) and by Robinson (1967). The pressure gradient is negative 
downstream from B (see figure 1) up to the point M ,  which is equidistant from 
B and C. Downstream of M ,  the pressure gradient is positive; at  C the pressure 
is the same as at B. The pressure gradient - g d u / d x  is O(1). The behaviour 
of the solutions of (19) with boundary conditions (20) under these circumstances 
is well known, both from experience and from theoretical considerations. It can 
be shown theoretically (see for, instance, Kaplun’s argument, as formulated by 
Lagerstrom (1964)) that, at a short distance from the pressure-minimum at M ,  
at an appreciable distance from the corner C, the skin-friction vanishes. Experi- 
mentally, it is observed that at  or near the point of vanishing skin-friction the 
flow separates from the wall. Separation need not occur at  a short distance down- 
stream from M in the exceptional case that the initial conditions are such that 
the boundary layer starts out (at B and at  D) with a velocity overshoot (i.e. 
negative momentum thickness), like a wall-jet. In this case the boundary layer 
carries more momentum and can negotiate a larger pressure rise than without a 
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velocity overshoot; it is necessary that the velocity overshoot be of the same 
order of magnitude as the Euler velocity. 

The possibility of boundary-layer separation is not taken into account by 
Robinson, or by Pillow. This in itself does not invalidate their flow models. The 
orders of magnitude of the velocity and the thickness of the boundary layers as 
deduced by Robinson or by Pillow might still be correct. Furthermore, as will 
be shown lat’er in this paper, with Pillow’s flow model the horizontal boundary 
layers have velocity overshoots (this was not noticed by Pillow), so that separa- 
tion may be postponed till a short distance from the corners and perhaps does 
not play an important role. 

In  Robinson’s flow model the horizontal boundary layers cannot have velocity 
overshoots which are of the same order of magnitude as the Euler velocity. This 
follows from the properties of the vertical shear layers. According to (9) and (13), 
the vertical velocity in the shear layer AB is given by 

w = w - ~4 a$&la[ - R+a$p/ax, 

w = - @a$,/az. 

where the Euler velocity W is given by 

The difference between the velocity in the shear layer and the Euler velocity 
is of smaller order of magnitude (O(R4)) than the Euler velocity (O(R*)), so 
that the vertical shear layers do not impart enough momentum to the horizontal 
boundary layers at B and D to generate a velocity overshoot which is of the same 
order of magnitude as the Euler velocity. Hence, in Robinson’s flow model 
separation is expected to occur a t  a short distance downstream from M and M’. 

It does not seem possible to modify Robinson’s flow model in order to take 
separation into account, without arriving at an inconsistency. This is suggested 
by the following mathematical argument, which is essentially based upon the 
fact that the viscous forces are of a larger order of magnitude than the buoyancy 
forces, and on the conjecture that near the point of vanishing skin friction, at  a 
distance of 0 (1) from the corners, a streamline leaves the wall; as stated before, 
this is what happens in experiments. When applying the following argument to 
Pillow’s flow model with non-negligible separation (i.e. separation at  a distance 
of 0 (1) from the corners), no inconsistency is found. 

The exact dimensionless equations of motion may be written in the following 
form : V(H - (l/v) v x j7) = - curl j7 + ROk, 

where H = (1/2a) (us+ w2) + p  is the total head, 7 = (au/az) - (awlax) is the 
vorticity, and j is the unit vector in the Y-direction. 

(21) 

Multiplication of (21) with a vector element of a streamline ds gives 

(aH/as) ds = - ds . curl jy + Reds. k. 

Single-valuedness of H requires that along every streamline the following 

(22) 
equation holds : 
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(The streamlines are assumed to be closed.) An approximation to the exact 
solution must satisfy (22) within the order of approximation. It will be shown 
that (22) cannot be satisfied by Robinson's flow model, modified to take separa- 
tion into account. 

Consider a streamline in the viscous region close to the cell-boundary 
A'BSC 'DS'A' (see figure 2).  The following equality holds: 

d s  . curl jy  = - (aq/an)ds,  

where the co-ordinates (s, n) measure distance along and perpendicular to 
(positive outward) the streamline under consideration. With Robinson's flow 
model, as defined by (13), the order of magnitude of @/an is found to be as 
follows: Close to A'B: aq/an = O ( R ) .  (23) 

Close to BS: aqlan = O(R4).  (24) 
Close to SC': aqpn G O(R4).  (25 )  

Close to C'D: @/an = O ( R ) .  (26) 
Close to DS': aylan = O(R*).  (27) 
Close to S'A': aq/an G O(R*).  (28) 

Robinson's flow model does not give the order of magnitude of aqlan in the 
separated layers, because separation is not taken into account. If one assumes 
that the order of magnitude of the velocity in the separated layer is not larger 
than the largest velocity which occurs in Robinson's model (namely O(R*)), 
then the thickness of the separated layers cannot be of smaller order of magnitude 
than the thickness of the horizontal boundary layers (which is 0 (R-*)), because 
this would cause the vorticity flux to be discontinuous in the regions where the 
flow separates, which is impossible, because there are no vorticity sources or 
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sinks of infinite strength (like for instance the leading edge of a flat plate) in these 
regions. The inequalities (25) and (28) follow. 

If the equality signs hold in (25) and (28) equation (22) is, to leading order, 

For a streamline very close to the cell boundary, the following approximate 
equalities hold (using (17)) .  

Along BS: aq/an a2u/az2 2 - (l/o-) Ud Uldx. (30) 

Along DS’: aT/an  - a2u/az2 g (l/o-) Ud U p x .  (31) 
Hence 

1 1 
2u (32) = - - [U2(S) + U2(S’)] = _ _  j p (S ) ,  u 

where U (S) + 0, because separation must take place upstream of a stagnation 
point of the Euler solution. 

The vorticity, defined as 7 = (8ula.z) - (awlax), is positive inside the cell 
A‘BSC’DS‘A’, and negative inside the separation bubbles SCC‘ and S’AA’. 
Therefore, ar/an < 0 along SC’ and S‘A’. 

Hence (29) cannot be satisfied. 
If the inequality signs hold in (25) and (28), equation (22) is to leading order 

From (32) it  follows that (33) is not satisfied. 
Hence Robinson’s leading-order solution, modified to take separation into 

account, does not satisfy equation (22), and is therefore not single-valued, so 
that Robinson’s modified leading-order solution cannot represent the asymptotic 
behaviour of the flow. As will be shown in the next section, Pillow’s flow model 
can satisfy the single-valuedness condition (equation (22)). The underlying 
reason is that in Pillow’s flow model the viscous forces are of the same order of 
magnitude as the buoyancy forces. 

The point at which Robinson’s study takes a course which does not lead to 
Pillow’s flow model is the conclusion drawn from equation (ll), namely m = 2. 
The correct conclusion is m < 2, because the boundary-layer solution can always 
be made to satisfy the following boundary condition : 

Of course Robinson’s choice of m = 2 is permitted, but it is not required, and 
(this is our main point) leads to the serious difficulty of insisting that the hori- 
zontal boundary layers suffer only a negligible separation, in spite of being 
subject to an 0 (1) adverse pressure gradient over half their length. 
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The remainder of this paper will be devoted to a discussion of Pillow’s flow 
model, and to a comparison of Robinson’s and Pillow’s results with numerical 
calculations by Fromm (1965). 

4. Discussion of Pillow’s flow model 
It is convenient to introduce new dimensionless variables, which turn out to 

remain 0 (1) (although not some of their derivatives) as R -+ 00. 

The maximum possible buoyancy force which can work on a fluid element is 
pogaAT. Taking gaAT as the unit of acceleration, and d as the unit of length, one 
obtains [gadAT]* as the velocity unit. With 

r* = dr, v* = [gadAT]*T, T* = To+AT8, p*-pogz* = pogadATp, 
the Boussinesq equations are 

( a .  V) 0 = -V@+ek+ dR-*V20, 
(0. v)e = ~-#R-*v~o. 

divQ = 0. 

It seems reasonable to assume that as R+co the diffusive terms will be 
negligible, except close to the cell boundaries, so that in the interior of the cell 
the Euler equations hold. Assuming that the streamlines are closed, Pillow 
(1952) has shown that 8 = 0 in the interior. According to Prandtl’s (1904) 
theorem, the vorticity equals lo, a constant, in the interior, so that the Euler 
solution satisfies the following equation : 

(38) v2$ - - 
0 - To, 

where $o is the leading term in the asymptotic expansion for the stream function 
of the Euler solution. The constant f j o  follows from the requirement that a 
single-valued solution for the thin viscous region along the cell boundary be 
possible. In  general, it is very difficult to actually determine f o ;  this has been 
done only for the simple case where the cell has a circular cross-section (Batchelor 
1956; Feynman & Lagerstrom 1956). 

A solution of (38) has been constructed in the form of a series by Pillow (1 952) 
and Robinson (1967). It is noteworthy that the Euler solution has stagnation 
points in the corners. 

The equations which describe the flow in the thin boundary layers along the 
cell boundaries (henceforth to be called the Prandtl equations)? must have the 
following properties: (i) diffusive terms must be present, so that the boundary 
conditions at  the cell boundaries can be satisfied; (ii) in order to make 
matching possible, the Euler and Prandtl expansions must have a ‘domain 
of overlap’ (Kaplun & Lagerstrom 1957; Kaplun 1957). It is highly plausible 
that a sufficient condition for this requirement to be satisfied is that the Euler 
and Prandtl equations have a ‘domain of overlap’. This is the case if the 
convective term and the pressure term are present in the Prandtl equation, 

t The term ‘Prandtl equations’ is used in a generalized sense. It is not a priori clear 
that the Prandtl equations will be identical with Prandtl’s classical boundary -layer equation. 
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possibly in simplified form; (iii) the viscous term must be of the same order of 
magnitude as the buoyancy term, in order to make it possible to satisfy the 
single-valuedness condition, equation (22); (iv) given the fact that the convective 
term is present, the Prandtl equations must also contain a pressure term. This 
can be seen as follows: 

Taking the divergence of (35) gives, in the absence of the pressure term, 

2 @ 2 + 2  (g)2 = 2fjZ+%. aii ae 
(39) 

In the outer parts of the viscous region, aO/az + 0,  f j  +fo .  Wherever aiil8.z changes 
sign (which is required by the matching with the Euler solution) the right-hand 
side of (39) changes sign; however, the left-hand side is positive semi-definite. 
Hence a Prandtl solution which matches with the Euler solution does not exist 
if the Prandtl equations do not contain a pressure term. 

If it  turns out that no limit process can be found which gives Prandtl equations 
which satisfy the four requirements listed above, additional subregions, each 
with its own limit process, must be introduced, and the assumption of inviscid 
flow in the interior must be reconsidered. On the other hand, it is not claimed 
that the set of four requirements just given is sufficient to select a unique limit 
process. 

The reader may easily convince himself, that the following limit process 
satisfies the four requirements: ( a )  the co-ordinate normal to the cell boundary 
is stretched proportionally to R), i.e. x = R-at along AB (or A’B if separation 
takes place), z - d = R-if; along BC (or BX), etc. This corresponds to a boundary- 
layer thickness of O ( d ) ;  (a) all other quantities remain 0 (1). 

The Prandtl equations are found to be, in unstretched variables, in the 
vertical layers : , a 6  ad dP a2c 

ax ax d z  ax2 
U-+$- = @-++++*R-&---, 

divO = 0, (41) 

in (the unseparated portions of) the horizontal layers: 

divQ = 0, (44) 

Here 0 and w are the Euler velocities at  the horizontal and vertical cell boun- 
daries. 

Equations (40)-(45) were obtained by Pillow (1952), who constructed an 
approximate solution by replacing the convective velocity by a known function. 

The single-valuedness condition (22) can be rewritten as 



634 P. Wesseling 

where i j  is the vorticity with the scaling adopted at the beginning of this section. 
With Pillow’s flow model, aq/an = O(R4) in the viscous region (see the limit 
process definition preceding (40)), so that both terms in (46) are O(1). Hence, 
Pillow’s flow model can indeed satisfy the single-valuedness condition. 

An interesting feature of the solution of (40)-(45), which was not mentioned 
by Pillow, can be brought out by the following qualitative discussion. 

In  the upward-moving vertical layer 0 > 0, because the flow has just passed 
close to the hot lower wall. Equation (40) shows that the buoyancy force generates 
a velocity overshoot in the upward-moving layer. For instance, the difference 
between the kinetic energy in the centre (< = 0) of the upward-moving layer 
and the kinetic energy just outside the layer satisfies the following equation: 

ax2 a2G I (0,Zl d 
- [ [ g G z ( O , ~ ) - $ ~ z ( ~ ) ]  = 8(0,z)+c~&R-*- . 
dz (47) 

The retarding viscous force cannot completely balance the buoyancy form, 
because the viscous force becomes small when the difference between w(0, z)  and 
W ( z )  becomes small. 

Therefore, the vertical layer develops into a jet as it moves upward, impinging 
on the upper wall and generating a velocity overshoot in the upper horizontal 
layer which resembles a wall-jet. The velocity difference between the vertical 
jet and the Euler flow is 0 (1).  Hence, the velocity overshoot in the horizontal 
layer will also be 0 ( 1). Similarly, the downward-moving vertical boundary layer 
develops into a jet, owing to the negative buoyancy force which is acting in the 
downward-moving layers, so that there is also a velocity overshoot of 0 (1)  in the 
lower horizontal boundary layer. Hence, unlike the horizontal boundary layers 
in Robinson’s flow model, the horizontal boundary layers do not necessarily 
separate at  a short distance downstream of the pressure minima a t  M and M ‘  
(figure 2). But, depending on the strength of the jets, separation might still take 
place at  a distance of 0 (1) from the corner. 

Equation (47) leads one to expect that the vertical jets will become more 
powerful as the Rayleigh number increases. When R becomes larger, +Gz- tm2 
will increase, so that a2G/ax2] o,B increases, until the viscous term is again balanced 
against the buoyancy term and the inertia term. 

Robinson’s and Pillow’s flow model, and the qualitative predictions made in 
the present paper, will now be compared with the numerical results obtained by 
Fromm (1965). 

Pillow’s (1952) approximate calculations result in the following relation 
between the Nusselt number and the Rayleigh number : 

N = 0.86R4, (48) 

where 

The cells are assumed to be square and IT = 1. The fact that N is proportional to 
Ri in Pillow’s flow model does not depend on Pillow’s approximate calculations, 
but follows directly from the limiting process which was used to obtain equations 
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(40)-(45). The approximate calculations merely serve to determine the constant 
of proportionality. 

According to Robinson (1967, p. 594) the relation between N and R obtained 
from the numerical solution of the exact equations constructed by Fromm (1965) 
can be approximately represented by 

Fromm (1965, p. 1763) states that 
N 0.19R0’28. (49) 

N N R0.296. (50) 

10 

5 

4 
N 

3 

2 

1 
lo4 

I I I 
lo5 106 

R 
lo7 

FIGTJRE 3. Dependence of Nusselt number on Rayleigh number. 0, From’s numerical 
results; - , N = 0.285R); - --, N = 0.19R0.28; -.-.- , N - RO.296. 

According to Fromm (p. 1765), N drops off for R 2 3 x lo5 owing to boundary- 
layer separation. 

As may be seen in figure 3, a good fit to Fromm’s data is also obtained with 

The inaccuracy in bringing over the points representing Fromm’s results in 
figure 3 from Fromm’s (1965) rather small-sized figure 7 is estimated to be of 
the order of 1/50 of the horizontal unit in figure 3. 

N = 0.285Rt. (51) 

Robinson’s (1967, p.594) best estimate is 

N = 0*15R*. (52) 
Again, the fact that N is proportional to R* follows directly from Robinson’s 
limiting process, defined by (13). 
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Figure 3 shows that Promm’s results are in favour of limit processes which 
make N proportional to R). 

The discrepancy between Robinson’s result (52) and Fromm’s results (repre- 
sented in figure 3) is explained by Robinson (1967, pp. 594,595) in the following 
way. Robinson suggests that the Pillow model gives a smaller heat transfer than 
the Robinson model for R 2 4 x lo5, but a larger heat transfer for R 5 4 x 105. 
Furthermore, Robinson assumes that perhaps the flow behaves in such a way 
as to maximize the heat transfer, so that the Pillow model is realized for 
R 5 4 x lo5, and the Robinson model for R 2 4 x lo5. It is further argued by 
Robinson (in agreement with a private communication by Fromm) that for 
R 2 3 x lo5 Fromm’s calculations give a Nusselt number which is too low, owing 
to insufficient resolution of the boundary layer. In  other words, in the region where 
Robinson’s model is valid, Fromm’s results are inaccurate. Note that, if the drop 
in Nusselt number for R 2 3 x lo5 cited by Robinson and Fromm is due to flow 
separation, as suggested by Fromm (1965, p. 1765), this behaviour of N cannot 
be termed an inaccuracy. 

Be this as it may, Fromm’s results seem to support the proportionality of N 
with Rg as predicted by Pillow. 

The large error in Pillow’s prediction of the proportionality constant may be 
ascribed to the mistake in Pillow’s analysis which was found by Robinson (1967, 
p. 583), to the fact that Pillow’s calculations do not simulate the velocity over- 
shoots in the viscous region, and to the fact that Pillow’s calculations are 
(necessarily) approximate. 

Fromm’s isodine patterns (Fromm 1965, figure 9) do not show the type of 
behaviour of the vorticity which one would expect if the vertical jets predicted 
in the present paper were present. There do not seem to be large vorticity 
gradients across the vertical layers. However, with the finer resolution of the 
pattern given in Fromm’s figure 8, some vorticity variation across the vertical 
layers begins to appear. It seems possible that for the range of Rayleigh numbers 
studied by Fromm the vertical jets are not yet well developed. The horizontal 
boundary layers separate a t  a large distance from the corners, upstream from 
the mid-point even, but as R increases the separation point moves downstream 
(Fromm 1965, figure 9). This may be caused by the vertical jets which grow 
stronger as R increases. Fromm’s streamline patterns seem to show some 
evidence of the vertical jets predicted in the present paper. The streamlines in 
the vertical layers are crowded together, and more so as the opposite wall is 
approached (Fromm 1965, figure 9). 

It is of interest that Fromm’s results show that the flow separates at  the 
horizontal walls (see the streamline patterns in Fromm’s figure 9), since our 
deduction of an inconsistency in the Robinson flow model hinges on the occur- 
rence of boundary -layer separation. 

The fact that flow separation occurs upstream of the mid-point between the 
corners seems to indicate that the separation influences the Euler flow in the 
centre of the cell, so that the pressure minimum moves upstream. 

It should be kept in mind that for R 2 lo6 Fromm’s results oscillate in time 
(in a predictable way), and that Fromm’s figure 9 represents just one of the 
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several flow patterns that may occur during one oscillation. Furthermore, Fromm 
(1965, p. 1763) suggests that for R 2 107 the boundary layers are insufficiently 
resolved in his calculations; Robinson (1967, p. 595) suggests that this may 
already be the case for R 2 3 x lo5. 

This comparison of Robinson’s flow model, Pillow’s flow model and some 
qualitative features discussed in the present paper with Fromm’s calculations 
may be summarized as follows: (i) Fromm’s results do not support the Robinson 
model. Robinson suggests that Fromm’s results are inaccurate in the region of 
validity of the Robinson model; (ii) Fromm’s data support the relationship 
N - Rt, predicted by Pillow; (iii) Fromm’s results, by showing flow separation, 
support the argument given in the present paper to point out that it is likely 
that the Robinson flow model is inconsistent; (iv) Fromm’s results do not con- 
stitute a strong argument against the occurrence of the vertical jets predicted 
in the present paper, because they are ambiguous on this point. 

Taylor vortex cells between rotating concentric cylinders are qualitatively 
similar to two-dimensional convection cells. Approximate calculations by the 
present author (1967) of strongly developed Taylor vortex flow, in which the 
velocity overshoots in the viscous regions were simulated, resulted in torque 
predictions which are 15-30 % higher than experimentally observed values. It 
was also predicted that the dimensionless torque should be inversely proportional 
to the one-quarter power of the Taylor number. This was found to be approxi- 
mately in agreement with experiment in one case, and exactly in agreement in 
another case. 

This paper presents the results of research carried out partly at  the Jet  Pro- 
pulsion Laboratory, California Institute of Technology, under contract no. NAS 
7-100, sponsored by the National Aeronautics and Space Administration, and 
partly a t  the California Institute of Technology, sponsored by Air Force Grant 
no. AF-AFOSR-338-67. 
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